23 research outputs found

    Sex-specific differences in white matter microvascular integrity after ischaemic stroke

    Get PDF
    Background and purpose Functional outcomes after ischaemic stroke are worse in women, despite adjusting for differences in comorbidities and treatment approaches. White matter microvascular integrity represents one risk factor for poor long-term functional outcomes after ischaemic stroke. The aim of the study is to characterise sex-specific differences in microvascular integrity in individuals with acute ischaemic stroke.Methods A retrospective analysis of subjects with acute ischaemic stroke and brain MRI with diffusion-weighted (DWI) and dynamic-susceptibility contrast-enhanced (DSC) perfusion-weighted imaging obtained within 9 hours of last known well was performed. In the hemisphere contralateral to the acute infarct, normal-appearing white matter (NAWM) microvascular integrity was measured using the K-2 coefficient and apparent diffusion coefficient (ADC) values. Regression analyses for predictors of K-2 coefficient, DWI volume and good outcome (90-day modified Rankin scale (mRS) score <2) were performed.Results 105 men and 79 women met inclusion criteria for analysis. Despite no difference in age, women had increased NAWM K-2 coefficient (1027.4 vs 692.7x10(-6)/s; p=0.006). In women, atrial fibrillation (beta=583.6; p=0.04) and increasing NAWM ADC (beta=4.4; p=0.02) were associated with increased NAWM K-2 coefficient. In multivariable regression analysis, the K-2 coefficient was an independent predictor of DWI volume in women (beta=0.007; p=0.01) but not men.Conclusions In women with acute ischaemic stroke, increased NAWM K-2 coefficient is associated with increased infarct volume and chronic white matter structural integrity. Prospective studies investigating sex-specific differences in white matter microvascular integrity are needed

    Multimodal MRI of grey matter, white matter, and functional connectivity in cognitively healthy mutation carriers at risk for frontotemporal dementia and Alzheimer's disease

    Get PDF
    Background: Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are associated with divergent differences in grey matter volume, white matter diffusion, and functional connectivity. However, it is unknown at what disease stage these differences emerge. Here, we investigate whether divergent differences in grey matter volume, white matter diffusion, and functional connectivity are already apparent between cognitively healthy carriers of pathogenic FTD mutations, and cognitively healthy carriers at increased AD risk. Methods: We acquired multimodal magnetic resonance imaging (MRI) brain scans in cognitively healthy subjects with (n=39) and without (n=36) microtubule-associated protein Tau (MAPT) or progranulin (GRN) mutations, and with (n=37) and without (n=38) apolipoprotein E ϵ4 (APOE4) allele. We evaluated grey matter volume using voxel-based morphometry, white matter diffusion using tract-based spatial statistics (TBSS), and region-to-network functional connectivity using dual regression in the default mode network and salience network. We tested for differences between the respective carriers and controls, as well as for divergence of those differences. For the divergence contrast, we additionally performed region-of-interest TBSS analyses in known areas o

    Expert consensus document: Semantics in active surveillance for men with localized prostate cancer — results of a modified Delphi consensus procedure

    Get PDF
    Active surveillance (AS) is broadly described as a management option for men with low-risk prostate cancer, but semantic heterogeneity exists in both the literature and in guidelines. To address this issue, a panel of leading prostate cancer specialists in the field of AS participated in a consensus-forming project using a modified Delphi method to reach international consensus on definitions of terms related to this management option. An iterative three-round sequence of online questionnaires designed to address 61 individual items was completed by each panel member. Consensus was considered to be reached if ≥70% of the experts agreed on a definition. To facilitate a common understanding among all experts involved and resolve potential ambiguities, a face-to-face consensus meeting was held between Delphi survey rounds two and three. Convenience sampling was used to construct the panel of experts. In total, 12 experts from Australia, France, Finland, Italy, the Netherlands, Japan, the UK, Canada and the USA participated. By the end of the Delphi process, formal consensus was achieved for 100% (n = 61) of the terms and a glossary was then developed. Agreement between international experts has been reached on relevant terms and subsequent definitions regarding AS for patients with localized prostate cancer. This standard terminology could support multidisciplinary communication, reduce the extent of variations in clinical practice and optimize clinical decision making

    Linkage disequilibrium analysis to enable more efficient gene and QTL mapping in apple

    Get PDF
    BACKGROUND/OBJECTIVE: Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. METHODS: Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). RESULTS: Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). CONCLUSION: Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight

    Magnetic Resonance Imaging of Stroke

    No full text
    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury (with T1-, T2-, T2*-, and/or diffusion-weighted MRI), and hemodynamics (with perfusion MRI), it offers a valuable tool for (pre)clinical and experimental studies on stroke pathology, treatment, and recovery. Combined MRI protocols that inform of different aspects of stroke pathophysiology enable the delineation of irreversibly damaged tissue and, potentially salvageable, tissue at risk of infarction, based on concepts like the perfusion-diffusion mismatch, or by predictive modeling of infarct probability. These approaches can aid in the selection of patients who could respond favorably to thrombolysis or thrombectomy. Furthermore, structural and functional MRI of the progression of affected tissue may contribute to the monitoring and characterization of effects of (experimental) therapeutic interventions aimed at improving outcome after stroke

    Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates

    No full text
    Background: Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T-2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. Results: An improved iterative self-organizing data analysis algorithm was used to combine T-2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P <0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P <0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. Conclusion: These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting

    Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms

    Get PDF
    Estimation of hemorrhagic transformation (HT) risk is crucial for treatment decision–making after acute ischemic stroke. We aimed to determine the accuracy of multiparametric MRI-based predictive algorithms in calculating probability of HT after stroke. Spontaneously, hypertensive rats were subjected to embolic stroke and, after 3 h treated with tissue plasminogen activator (Group I: n = 6) or vehicle (Group II: n = 7). Brain MRI measurements of T2, T2*, diffusion, perfusion, and blood–brain barrier permeability were obtained at 2, 24, and 168 h post-stroke. Generalized linear model and random forest (RF) predictive algorithms were developed to calculate the probability of HT and infarction from acute MRI data. Validation against seven-day outcome on MRI and histology revealed that highest accuracy of hemorrhage prediction was achieved with a RF-based model that included spatial brain features (Group I: area under the receiver-operating characteristic curve (AUC) = 0.85 ± 0.14; Group II: AUC = 0.89 ± 0.09), with significant improvement over perfusion- or permeability-based thresholding methods. However, overlap between predicted and actual tissue outcome was significantly lower for hemorrhage prediction models (maximum Dice’s Similarity Index (DSI) = 0.20 ± 0.06) than for infarct prediction models (maximum DSI = 0.81 ± 0.06). Multiparametric MRI-based predictive algorithms enable early identification of post-ischemic tissue at risk of HT and may contribute to improved treatment decision-making after acute ischemic stroke

    Progression of Brain Lesions in Relation to Hyperperfusion from Subacute to Chronic Stages after Experimental Subarachnoid Hemorrhage:A Multiparametric MRI Study

    No full text
    <p>Background: The pathogenesis of delayed cerebral injury after aneurysmal subarachnoid hemorrhage (SAH) is largely unresolved. In particular, the progression and interplay of tissue and perfusion changes, which can significantly affect the outcome, remain unclear. Only a few studies have assessed pathophysiological developments between subacute and chronic time points after SAH, which may be ideally studied with noninvasive methods in standardized animal models. Therefore, our objective was to characterize the pattern and correlation of brain perfusion and lesion status with serial multiparametric magnetic resonance imaging (MRI) from subacute to chronical after experimental SAH in rats. Methods: SAH was induced by endovascular puncture of the intracranial bifurcation of the right internal carotid artery in adult male Wistar rats (n = 30). Diffusion-, T2-, perfusion- and contrast-enhanced T1-weighted MRI were performed on a 4.7-tesla animal MR system to measure cytotoxic and vasogenic edema, hemodynamic parameters and blood-brain barrier permeability, respectively, at days 2 and 7 after SAH. The neurological status was repeatedly monitored with different behavioral tests between days -1 and 7 after SAH. Lesioned tissue - identified by edema-associated T2 prolongation - and unaffected tissue were outlined on multislice images and further characterized based on tissue and perfusion indices. Correlation analyses were performed to evaluate relationships between different MRI-based parameters and between MRI-based parameters and neurological scores. Results: Similar to clinical SAH and previous studies in this experimental SAH model, mortality up to day 2 was high (43%). In surviving animals, neurological function was significantly impaired subacutely, and tissue damage (characterized by T2 prolongation and diffusion reduction) and blood-brain barrier leakage (characterized by contrast agent extravasation) were apparent in ipsilateral cortical and subcortical tissue as well as in contralateral cortical tissue. Notably, ipsilateral cortical areas revealed increased cerebral blood flow and volume. Animals that subsequently died between days 2 and 7 after SAH had markedly elevated ipsilateral perfusion levels at day 2. After a week, neurological function had improved in surviving animals, and brain edema was partially resolved, while blood-brain barrier permeability and hyperperfusion persisted. The degree of brain damage correlated significantly with the level of perfusion elevation (r = 0.78 and 0.85 at days 2 and 7, respectively; p <0.05). Furthermore, chronic (day 7 after SAH) blood-brain barrier permeability and vasogenic edema formation were associated with subacute (day 2 after SAH) hyperperfusion (r = 0.53 and 0.66, respectively; p <0.05). Conclusion: Our imaging findings indicate that SAH-induced brain injury at later stages is associated with progressive changes in tissue perfusion and that chronic hyperperfusion may contribute or point to delayed cerebral damage. Furthermore, multiparametric MRI may significantly aid in diagnosing the brain's status after SAH. Copyright (C) 2013 S. Karger AG, Basel</p>
    corecore